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We present a method to construct a modulation frequency response curve for bistable systems in the
presence of noise. To this end, a small sinusoidal modulation is applied to the system such that it switches
between its two stable states. The response curve we construct yields information on the nature of the physical
mechanism underlying the switching process and is furthermore comparable to the standard response curves of
linear systems. Our semianalytical approach, which only needs approximate Kramer rates, is in good agree-
ment with numerical simulations. The concept is applicable to a wide range of systems.
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I. INTRODUCTION

Since the introduction of stochastic resonance(see Gam-
maitoni et al. [1] for an overview) in the 1980s, there has
been a renewed interest in the effect of small noise on the
response of modulated systems. Stochastic resonance has
since been studied in the adiabatic and in the linear response
limit [2–5] and beyond[6,7]. It has been experimentally ob-
served in many systems of a very diverse nature[8–12].

In this paper we tackle a related topic and study the fre-
quency response of a bistable system with noise. We devel-
oped this frequency response in such a way that it can be
compared directly with standard frequency responses of lin-
ear systems. In a linear system one usually determines the
transfer function of the system using an input signal with
constant amplitude and recording the output amplitude at
different input frequencies. In a noisy bistable system, this is
no longer possible as the output hops stochastically between
two states and hence the output amplitude is fixed by the
distance between the two stable points. We propose to record
the minimum input amplitude necessary to achieve a certain
error rate in the output signal. The inverse of this minimum
amplitude leads to an alternative definition of the modulation
frequency response. This stochastic frequency response
(SFR) is a tool to study the physical effects causing the bi-
stability and switching between the two stable states, much
as the frequency response of a linear system yields informa-
tion about the studied system. Furthermore, using the transi-
tion rates between the stable states, we can derive a semiana-
lytical formula for this SFR and obtain a closed form for the

asymptotic behavior near the stochastic resonance peak in
the SFR.

In Sec. II we introduce the general idea and the method
used to record the frequency response of a bistable system.
Section III is devoted to the theoretical study of the SFR and
culminates in an analytical expression. Our results can be
applied to any bistable system. As a first example, we apply
it in Sec. IV A to a bistable system with Kramers transition
rates proposed by McNamara and Wiesenfeld[2]. A more
applied result is given in Sec. IV B, where we use it to
determine the influence of a limiting time scale on polariza-
tion switching in vertical-cavity surface-emitting lasers
(VCSEL’s). A summary of the most important findings con-
cludes this paper in Sec. V.

II. DEFINITION OF THE STOCHASTIC
FREQUENCY RESPONSE

Consider the following one-dimensional Langevin equa-
tion (see Refs.[1,2]):

ẋ =
− dVsxd

dx
+ Î2Dj̃std, s1d

with the potentialVsxd given by

Vsxd = −
1

2
x2 +

1

4
x4 + Jx, s2d

with d-correlated noise

kj̃stdj̃ssdl = dst − sd, s3d

and J a parameter that can be modulated. The potential for
J=0 is plotted in Fig. 1. It has a stable state at +1 and one at
−1 (from now on called the “+” mode and the “−” mode).
Due to the noise, spontaneous transitions between the stable
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states occur. When the parameterJ is modulated with an
amplitudeJm around a bias pointJb at pulsationv such that

J = Jb + Jmsinsvt + fd, s4d

switching between the two stable states is observed. We ex-
plicitly introduce an initial phasef because we will later
define t=0 as the time corresponding to a switching event
(see Sec. III). Depending on the frequency and amplitude,
the system will follow the modulation. Stochastic resonance
occurs(for small amplitudes in the adiabatic limit) when the
frequency of the modulated signal equals one-half of the
Kramers escape raterK (see Refs.[1,2]). A typical time trace
of x whenJ is modulated according to Eq.(4) can be seen in
Fig. 2.

It is obvious that stochastic effects play an important role:
the switching between the two stable modes occurs with a
random delay when we modulateJ. If this delay is longer
than half a modulation period, a switch will be missed. We
define here asuccessfulmodulation cycle as one where the
system switches up and down during one modulation period.
From the time trace ofx we can deduce the fraction of such
successful cycles. As we have to determine the percentage of
successful switches for a large numbers,100 000d of modu-
lation cycles to obtain statistically relevant data, we will ac-
tually count the number of missed switches by looking at the
histogram of the time the system stays in one mode before

jumping to the other one. The histograms of these residence
times fPrstdg of both stable modes can be seen in Fig. 3.

Consider the “+” mode in Fig. 2. The residence time of
this mode is nearly always close toT/2. Therefore the his-
togram, or probability density function, of the residence time
has a peak atT/2. The peak is rather broad, since there is
some spread in the value of the residence time. If the system
does not switch aroundT/2, it will often stay in the “+”
mode for one and a half periods, having another chance to
switch in the next modulation cycle. There is one such oc-
currence in Fig. 2. These events cause the second peak
(around 3T/2) in the histogram in Fig. 3. The third-, fourth-,
and higher-order peaks are caused when the system misses
its cue twice, thrice, four times, etc. The same story applies
to the residence time of the “−” mode.

In Fig. 3 the height of each peak is a fractionF of that of
the previous peak. In Sec. III we show that this fraction is the
same for any two consecutive peaks and that the shape of the
peaks remains the same. The magnitudeF of this decrease
actually depends on the modulation amplitude, which we
chose such to have a decrease between consecutive peaks of
one decade. If we callPrstd the probability density function
of the residence times, a decrease of one decade implies that

log10Prst + Td = log10Prstd − 1 s5d

or

Prst + Td =
1

F
Prstd =

1

10
Prstd. s6d

A successful switch is in principle defined by integrating
Prstd over a modulation periodT around the position of the
first peak. However, such an indicator is too sensitive to the
background(i.e., the switches that take place in the absence
of an input modulation signal) [13]. To avoid this problem,
we integratePrstd over aT/2 width and we will only work at
frequencies above the stochastic resonance frequency. After
integration ofPrstd over half a modulation periodT/2 around
the position of the first peak, we obtain the probability of a
successful up switch(i.e., a switch from the “−” to the “+”
mode), whereas such an integration around the position of

FIG. 1. Potential as given by Eq.(2) for J=0. Two stable states
can be found atx= +1 andx=−1.

FIG. 2. Time traces ofx, obtained by numerically solving Eq.
(1). Parameter values areD=0.048,T=2p /v=100,Jb=0, andJm

=0.31.

FIG. 3. Numerical histograms of the residence timesPrstd in the
“+” mode (solid line) and in the “−” mode(dashed line). Derived
from a time trace of 100 000 modulation periods. Same parameter
values as in Fig. 2.
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the second peak yields the probability of a switch being
missed once. Because the shape of the different peaks in Fig.
3 is the same, the integral ofPrstd will scale in the same way
over a modulation period as the height of the peaks. There-
fore, the probability of a successful up switch is 10 times
larger than the probability a switch is missed once, which is
in its turn 10 times larger than the probability a switch is
missed twice, and so forth. So a one decade difference means
that 90% of the up switches are successful, as

S1 −
1

F
Do

n=0

` S 1

F
Dn

= 0.9 + 0.09 + 0.009 +̄ = 1. s7d

Similarly, 90% of the down switches(i.e., switches from the
“+” to the “−” mode) are successful. For a successful cycle,
both the up and down switches need to happen, leading to a
probability of a successful cycle of 81% for the situation
depicted in Fig. 3.

We now define thestochastic frequency response as the
inverse of the modulation amplitude needed to have a fixed
level of successful cycles as a function of the modulation
frequency. We use in this definition a fixed level of 81%. In
principle, one can choose a higher percentage, but this will
considerably lengthen the measurement(or integration) time
as in that case a missed switch only happens sporadically and
enough missed switches are needed to obtain a statistically
relevant histogram.

As we will show, to compare the SFR with standard re-
sponses of linear systems we need to look at the inverse of
the modulation amplitude. Indeed, in linear systems, the re-
sponse to a harmonic modulation is given by

Osvd = HsvdIsvd, s8d

whereIsvd is the Fourier transform of the input variable and
Osvd is the Fourier transform of the output variable. A stan-
dard procedure to determine the transfer functionHsvd is to
take a monochromatic inputIsvd with constant amplitude
and measure the outputOsvd as a function of the modulation
frequency.Osvd then equals the transfer function.

However, this is not possible for bistable systems in
which an input signalIsvd at frequencyv does not give in
general a periodic output, as is evident from the time trace
shown in Fig. 2. The problem that we want to address is how
to characterize quantitatively the response of a bistable sys-
tem, such that it sheds light on the physical phenomena regu-
lating its dynamics. In our picture, the input variable[in Eq.
(2) the parameterJ] drives an intermediate variableO1svd
through linear mechanisms.O1svd is the origin of the bista-
bility and drives the switching process, but is not directly
accessible. Our aim is to obtain the response function linking
O1svd to the input variable, thus getting useful information
about the underlying physics. For this purpose, we invert the
problem and introduce a suitable indicatorf(O2svd) based on
the outputO2svd of the system: the percentage of successful
modulation cycles. We assume that if the number of success-
ful switches is the same for different frequencies or

f„O2sv1d… = f„O2sv2d…, s9d

then the output variableO1svd we want to characterize is
also the same or

O1sv1d = O1sv2d. s10d

If we use a monochromatic input signal and change its am-
plitude in order to have a fixedf(O2svd), we can say that

O1svd = HsvdIsvd = const, s11d

similarly as in Eq.(8). So finally we obtain the frequency
response of our bistable system by inverting the previous
equation:

Hsvd =
const

Isvd
. s12d

This is why we use in our definition of the SFR theinverse
of the modulation amplitude needed to get 81% successful
cycles.

The above treatment can only be performed for frequen-
cies above the stochastic resonance frequency. At lower fre-
quencies, the histograms lose their distinct peaks at odd mul-
tiples of half the modulation period and tend towards a single
peak on an exponential background. Our definition of the
SFR cannot be used in this case, because it can only be
applied with at least two peaks in the histogram.

We will now show how such a stochastic frequency re-
sponse is fully determined by the transition rates of the two
stable modes.

III. THEORETICAL TREATMENT

If the parameterJ in Eq. (1) is not equal to zero, the
potential is skewed and the transition ratesr+ and r− of the
two states are no longer equal. If moreover the parameterJ
depends on time, the transition ratesr± will also be modu-
lated in time. The ratesr± can, in principle, be derived from
the Langevin equation of the system, although in practice
this is usually too difficult to do analytically. But anyway, the
histograms of the residence timesPm±

std are given by(see
Ref. [1])

Pm±
std = r±sJdexpF−E

0

t

r±sJddtG . s13d

The time dependence in Eq.(13) stems from the fact that we
are modulating the parameterJ according to Eq.(4). One has
to be careful, however, that the distribution of Eq.(13) is not
the distribution of the measured residence times plotted in
Fig. 3; it is the distribution of the time the system stays in the
“+” mode (“−” mode) if it was in that mode at timet=0. So
it is only the residence time of the “+” mode(“−” mode),
when the system switched to that mode at timet=0 or, in
other words, for a fixed phase relation between the input
modulation and the switch. To get the distribution of the
phase independent residence time, we have to average over
all possible phases(we write the dependence ofPm±

on f
explicitly):
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Pr±
std =E Pm±

st,fdP±fsfddf, s14d

where P±fsfd is the probability density that the system
switched to the “+” mode(“−” mode) with a phasef with
respect to the modulation. Unfortunately, there is no known
method to derive this phase distributionP±f, although in
some limits self-consistent distributions have been proposed
in the literature(see Refs.[1,3–5]).

Even without knowing the expression for Eq.(14), we can
get the information we need to derive an expression for the
SFR. Indeed, this frequency response is derived from the
modulation amplitude which leads to 81% successful cycles
or a difference of one decade between consecutive peaks in
the residence time distribution. Therefore, we only need the
relation between the height of consecutive peaks. We will
derive an expression forPr±

st+Td, with T being the period of
modulation. We write

Pm±
st,fd = r±st,fdexpfG±st,fdg, s15d

defining

G±st,fd = −E
0

t

r±st,fddt. s16d

We have

r±st + T,fd = r±st,fd, s17d

as r± is periodic, and

G±st + T,fd = −E
0

t+T

r±st,fddt

= −E
0

T

r±st,fddt −E
T

T+t

r±st,fddt s18d

=G±sT,fd −E
0

t

r±st,fddt s19d

=G±sTd + G±st,fd. s20d

Note thatG±sTd is independent of the phase

G±sTd = G±sT,fd ∀ f, s21d

since it is the integral of a periodic function over one period.
So we have

Pm±
st + T,fd = Pm±

st,fdexpfG±sTdg. s22d

Substituting in Eq.(14) yields

Pr±
st + Td = expfG±sTdgPr±

std. s23d

A decrease of the height with a factorF=ed between con-
secutive peaks ofPr±

is attained if

d = lnfPr±
stdg − lnfPr±

st + Tdg = − G±sTd s24d

=E
0

T

r±st,fddt. s25d

The phasef in this equation is irrelevant as explained by Eq.
(21) and can therefore be left out. We fixd=lns10d as a
reference value, which corresponds to a decrease of one de-
cade. So we have to solve

lns10d =E
0

2p/v

r±sJb + Jmsinvtddt. s26d

We remark that Eq.(26) represents two equations: one forr−
and one forr+. Therefore we have two integral equations to
solve for two variablesJb andJm. Plotting the inverse ofJm
as a function of frequency gives the stochastic frequency
response curve, as explained in Sec. II. Equation(26) is one
of the main theoretical results of this paper. It allows us to
generally evaluate the frequency response of a bistable sys-
tem and compare it with standard linear systems theory. To
show its validity and uses, we will apply it in the next section
to two problems: a simple bistable system with escape rates
proposed by McNamara and Wiesenfeld(see Ref.[2]) and
the problem of determining the influence of a limiting time
scale on polarization switching in VCSEL’s.

IV. APPLICATIONS

A. Frequency response of a simple bistable system

To study the general traits of the frequency response curve
we start with the modulated escape rates proposed by Mc-
Namara and Wiesenfeld[2] with the biasJb of the modula-
tion fixed at 0:

r±std = rKexpF±
Jm

D
cossvtdG , s27d

where the Kramer transition raterK (see Refs.[14,15]) is
given by

rK =
1

Î2p
e−1/4D. s28d

As in Refs.[1,2] we assume that the modulation amplitude is
small, so we can develop Eq.(27) as follows:

r±std . rKF1 ±
Jm

D
cossvtd +

1

2
SJm

D
D2

cos2svtdG . s29d

We actually take Eq.(29) as a starting point of the analysis
and calculate the corresponding frequency response.1 We
now combine Eqs.(25) and (29). The frequency response
which we defined in Sec. II[Eq. (12)] to be the inverse of the
modulation amplitude then equals

1In fact we also look at the modulation regions where Eq.(29) is
not a good approximation of Eq.(27).
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Hsvd = SDÎ2sdv − 2prKd
prK

D−1

. s30d

Equation(30) is plotted in Fig. 4 together with the frequency
response as obtained from simulations of Eqs.(1)–(3) and
semianalytical calculations using Eqs.(26) and(27). The sto-
chastic effects clearly cause a slope in the frequency re-
sponse, which flattens for high frequencies. There is a good
correspondence between simulations, the semianalytical fre-
quency response calculated by numerically solving Eq.(26),
and the full analytical approach[Eq. (30)]. At higher fre-
quencies, Eq.(30) deviates from the simulations because the
approximation in Eq.(29) is only valid for small modulation
amplitudes. The differences between the simulations and the
semianalytical calculations are caused by the limited validity
of the escape rates: Eq.(27) is also only valid for small
modulation amplitudes.

The asymptote in Fig. 4 atv=3.36310–3 is due to the
phenomenon of stochastic resonance. Its place is, however,
also determined by the value ofd [the exponential decrease
of the peaks in the residence time distribution—see Eq.
(24)]: indeed we have

v` =
2prK

d
=

2

d
vSR, s31d

wherevSR=prK is the modulation frequency for which sto-
chastic resonance occurs(see Refs.[1,2]). For the parameter
values used in Fig. 4 this results inv`=0.003 36. This value
corresponds exactly to the position of the asymptote in
Fig. 4. Note that Eq.(31) is not only valid for switching rates
given by Eq.(29), but also for Eq.(27) and for more general
well-behaving rates, since the approximationJ/D!1 is
valid at the asymptote, where the modulation amplitude van-
ishes.

B. Frequency response of polarization switching in VCSEL’s

We will now study the stochastic frequency response of
polarization switching in vertical-cavity surface-emitting la-

sers. This will not only show us a real-world example of such
a stochastic frequency response, but we will also demon-
strate how this method can be used to determine the physical
mechanism causing the switching and hence the bistability in
the system. VCSEL’s are semiconductor lasers that emit light
in a single longitudinal mode perpendicular to the substrate
on which they are fabricated. In their single-transverse-mode
regime, they usually emit linearly polarized light in one of
two orthogonal linear polarization modes. In some VCSEL’s,
abrupt polarization switching(PS) between these polariza-
tion modes(PM’s) is observed when the injected current is
changed. To model this PS we will use a phenomenological
intensity rate-equation model introduced in Refs.[16,17],
which has been shown to adequately describe the VCSEL’s
polarization response. The key ingredients in our intensity
rate-equation model are(i) current- or temperature-
dependent gain coefficients for the two polarization modes,
which cause PS to occur at the current or temperature where
the gains equalize, and(ii ) gain saturation coefficients, which
induce a region of bistability around the switching point.
Furthermore, in this model time is reduced with respect
to the carrier lifetime. The carrier noise is neglected; as in
VCSEL’s, it is much smaller than the spontaneous emission
noise. Written down in dimensionless parameters these equa-
tions are[16,17]

dpx

dt
= pxFh − «spx − «cpy −

G

2
G +

1

2
Rsp+ F̃x,

dpy

dt
= pyFh − «spy − «cpx +

G

2
G +

1

2
Rsp+ F̃y,

dh

dt
=

J − px − py

r
− h − pxfh − «spx − «cpyg

− pyfh − «spy − «cpxg, s32d

wherepx,y are the photon densities in the two PM’s,«s,c are
the optical saturation coefficients,h is the deviation of the
carrier density from its threshold value,G is the gain differ-
ence between the PM’s, andJ is the dimensionless current
above threshold given byJ=sI − I thd / I th with I being the cur-
rent (in mA) andI th being the VCSEL’s threshold current(in
mA). Rsp is the mean power spontaneously emitted in the
PM’s, r is the ratio of the photon to the carrier lifetime,t is

the reduced time, andF̃x,y are stochastic terms describing the
spontaneous emission noise with correlation functions

kF̃x,ystdF̃x,yssdl = 2 Rsppx,ydst − sd. s33d

The stochastic differential equations(32) have to be inter-
preted in the Stratonovich sense[18]. Thepx spyd mode plays
the role of the “−”(“+” ) mode of Sec. III. Finally, the polar-
ization switching is induced by changes in the gain differ-
enceG when the injected currentJ is changed, which we
express as

FIG. 4. SFR obtained from simulations of Eqs.(1)–(3) (circles),
semianalytical calculations using Eq.(26), and escape rates given
by Eq. (27) (solid line) and plot ofHsvd [Eq. (30)] (dashed line).
Parameter values used ared=lns10d and D=0.048, which corre-
spond to a stochastic resonant pulsation ofvSR=3.87310–3. The
asymptote near the stochastic resonance peak is clearly visible.
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G = gS1 −
J

Jswitch
D , s34d

whereJswitch is the current at which the PS happens andg
specifies the magnitude of the gain difference. After reduc-
tion of Eqs. (32) to a one-dimensional Langevin equation
describing the intensity in one of the polarization modes, we
can obtain the transition ratesr± between the two polariza-
tion modes(see Ref.[17]):

1

r±
=

2pJde

s− G + JdedsG + Jded
erfF sG ± Jded

2ÎRspde
GerfiF sG ± Jded

2ÎRspde
G ,

s35d

where de=«c−«s, erf is the error function, and erfi is the
imaginary error function. Using these transition rates, we can
calculate the frequency response from Eq.(26). This is
shown in Fig. 5(circles) and compared with simulations of
the frequency response based on the full set of equations(32)
(solid line). The excellent agreement between simulations
and semianalytical calculations confirms the validity of Eq.
(26). The asymptote in Fig. 5 atv=1.93106 is due to sto-
chastic resonance and agrees well with the calculated value
v=1.893106 of this asymptote using Eq.(31).

This frequency response can be used to determine the
physical mechanism of the switching(and consequently of
the bistable system). Indeed, consider that the parameterJ
which is experimentally available(and is modulated) does
not directly influence the potential of the system, but does so
through a linear systemH1svd. If we call G the parameter
that determines the potential, then we have

Gsvd = H1svdJsvd. s36d

The total response curve of the system is still given by the
inverse of the needed amplitude ofJ:

Htotsvd = H1svdG−1svd = H1svdHfrsvd. s37d

The total response curve is simply the product of the direct
frequency responseHfr andH1. In other words we can work
with such a definition of the frequency response in bistable
systems as if we were dealing with linear response curves.
This way, H1 (i.e., the physical mechanism that links the
modulated parameter with the change in potential) can be
identified.

As an example of this technique, let us consider that the
gain differenceG between the polarization modes in our
VCSEL is not directly influenced by the injected current, but
through another parameterG which in its turn depends on the
injected current. We assume thatG only reacts to current
fluctuations through a linear first-order response with a slow
time constant such that

G = gS1 −
G

Jswitch
D s38d

and

dG

dt
=

J − G

rG

, s39d

whererG is the ratio ofG’s time constant to the carrier life-
time. The resulting frequency response is also shown in Fig.
5. Again there is good correspondence between the simula-
tions and semianalytical calculations. Moreover, the fre-
quency response calculated using Eq.(38) matches very well
with the response that one would obtain by multiplying the
response calculated according to Eq.(34) with a first-order
transfer function(not shown) as indicated by Eq.(37). In this
frequency response we can clearly see the effect of the slow
time scale at whichG reacts. If one measures such a fre-
quency response for a particular device, the time scale—
which is intimately linked with the underlying physical
process—that determines the switching can be easily identi-
fied. This method can, for instance, be used to study the
influence of thermal effects on the PS in a VCSEL. Thermal
effects typically happen with a slow time constant(about 10
µs) and can be directly measured by looking at the
temperature-dependent frequency shift of the emitted light
(or chirp). In Refs. [19,20] such a comparison between the
measured thermal and PS frequency response was success-
fully used to show that PS in some VCSEL’s is(at least
partially) due to thermal effects.

V. CONCLUSION

In this paper we presented a method to determine a fre-
quency response curve in a bistable system with noise. This
SFR can be compared with classical responses of linear sys-
tems. It is defined as the inverse of the modulated amplitude
that is needed to get a fixed value of successful switches
between the two stable states of the system under test. The
definition is only valid for frequencies above the stochastic
resonance frequency, whereas the asymptote in the frequency
response curve clearly shows the presence of stochastic reso-
nance.

FIG. 5. Polarization switching frequency response simulated us-
ing Eqs. (32)–(34) (circles) and semianalytically calculated using
Eqs. (26) and (35) (solid line). Also shown are the simulated(tri-
angles) and semianalytical(dashed line) frequency responses if a
slow time scale as in Eqs.(38) and (39) is taken into account. The
parameter values used areJswitch=0.4, ec−es=8.47,Rsp=0.022,r
=0.001,g=25.3, andrG=1770 and correspond to a real device
[19].
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We have derived an equation to calculate this frequency
response based solely on the transition rates between the two
stable states of the system. The validity of this equation was
checked on two example bistable systems.

Moreover, we have shown how this method can be used
to characterize the underlying physical mechanism of the
switching (and consequently of the bistable system). If the
parameter that influences the potential of the system is not
directly experimentally available, we can still see its impact
on the frequency response. The total response curve is in that
case simply the product of the direct frequency response and
the frequency response of the parameter determining the po-
tential. This technique was experimentally used in Refs.

[19,20] to identify the physical mechanism causing polariza-
tion switching in particular VCSEL’s.
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