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Modulation frequency response of a bistable system with noise
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We present a method to construct a modulation frequency response curve for bistable systems in the
presence of noise. To this end, a small sinusoidal modulation is applied to the system such that it switches
between its two stable states. The response curve we construct yields information on the nature of the physical
mechanism underlying the switching process and is furthermore comparable to the standard response curves of
linear systems. Our semianalytical approach, which only needs approximate Kramer rates, is in good agree-
ment with numerical simulations. The concept is applicable to a wide range of systems.
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[. INTRODUCTION asymptotic behavior near the stochastic resonance peak in
the SFR.
Since the introduction of stochastic resonageee Gam- In Sec. Il we introduce the general idea and the method

maitoni et al. [1] for an overview in the 1980s, there has ysed to record the frequency response of a bistable system.
been a renewed interest in the effect of small noise on thgection 11l is devoted to the theoretical study of the SFR and
response of modulated systems. Stochastic resonance h@fminates in an analytical expression. Our results can be
since been studied in the adiabatic and in the linear respongfplied to any bistable system. As a first example, we apply
limit [2-5] and beyond6,7]. It has been experimentally ob- it in Sec. IV A to a bistable system with Kramers transition
served in many systems of a very diverse naf@rel?. rates proposed by McNamara and Wiesenf@ A more

In this paper we tackle a related topic and study the freqpplied result is given in Sec. IV B, where we use it to
quency response of a bistable system with noise. We devefetermine the influence of a limiting time scale on polariza-
oped this frequency response in such a way that it can bgon switching in vertical-cavity surface-emitting lasers

compared directly with standard frequency responses of linc/CSEL's). A summary of the most important findings con-
ear systems. In a linear system one usually determines thudes this paper in Sec. V.

transfer function of the system using an input signal with

constant amplitude and recording the output amplitude at

different input frequencies. In a noisy bistable system, this is Il. DEEINITION OF THE STOCHASTIC

no longer possible as the output hops s_tochastlcally between FREQUENCY RESPONSE

two states and hence the output amplitude is fixed by the

distance between the two stable points. We propose to record Consider the following one-dimensional Langevin equa-
the minimum input amplitude necessary to achieve a certaition (see Refs[1,2]):

error rate in the output signal. The inverse of this minimum AV

amplitude leads to an alternative definition of the modulation X= +V2DE(), (1)
frequency response. This stochastic frequency response dx

(SFF.Q is a tool t_o s'gudy the physical effects causing the bi'with the potentiaV(x) given by

stability and switching between the two stable states, much

as the frequency response of a linear system yields informa- , 1

tion about the studied system. Furthermore, using the transi- V(x) = - Xt ZX4 +Jx, ()
tion rates between the stable states, we can derive a semiana-

lytical formula for this SFR and obtain a closed form for the with &-correlated noise

(EVES) = 8st-9), 3)

*Current address: Lawrence Berkeley National Laboratory, Centednd J a parameter that can be modulated. The potential for
for Beam Physics, LBNL, 1 Cyclotron Rd., Berkeley, CA 94720, J=0 is plotted in Fig. 1. It has a stable state at +1 and one at
USA. Electronic address: Bob.Nagler@fulbrightweb.org; URL: —1 (from now on called the “+” mode and the “-” moye
http://www.tona.vub.ac.be Due to the noise, spontaneous transitions between the stable
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FIG. 1. Potential as given by E@) for J=0. Two stable states FIG. 3. Numerical histograms of the residence tirRg) in the
can be found ak=+1 andx=-1. “+” mode (solid line) and in the “~” mode(dashed ling Derived
from a time trace of 100 000 modulation periods. Same parameter
states occur. When the parameteis modulated with an Values as in Fig. 2.
amplitudeJ,, around a bias poini, at pulsationw such that
. jumping to the other one. The histograms of these residence
I=Jp + Jsin(wt + ¢), (4) Jtimees[lgizj>,(t)] of both stable modes cgn be seen in Fig. 3.
switching between the two stable states is observed. We ex- Consider the “+” mode in Fig. 2. The residence time of
plicitly introduce an initial phasep because we will later this mode is nearly always close 102. Therefore the his-
definet=0 as the time corresponding to a switching eventtogram, or probability density function, of the residence time
(see Sec. Il Depending on the frequency and amplitude,has a peak at/2. The peak is rather broad, since there is
the system will follow the modulation. Stochastic resonancesome spread in the value of the residence time. If the system
occurs(for small amplitudes in the adiabatic limiivhen the  does not switch around/2, it will often stay in the “+”
frequency of the modulated signal equals one-half of thenode for one and a half periods, having another chance to
Kramers escape ratg (see Refs[1,2]). A typical time trace  switch in the next modulation cycle. There is one such oc-
of x whenJ is modulated according to E¢4) can be seenin currence in Fig. 2. These events cause the second peak
Fig. 2. (around 37/2) in the histogram in Fig. 3. The third-, fourth-,

It is obvious that stochastic effects play an important role:and higher-order peaks are caused when the system misses
the switching between the two stable modes occurs with &s cue twice, thrice, four times, etc. The same story applies
random delay when we modulage If this delay is longer to the residence time of the “~” mode.
than half a modulation period, a switch will be missed. We In Fig. 3 the height of each peak is a fractibrof that of
define here auccessfumodulation cycle as one where the the previous peak. In Sec. Il we show that this fraction is the
system switches up and down during one modulation periodsame for any two consecutive peaks and that the shape of the
From the time trace ok we can deduce the fraction of such peaks remains the same. The magnit&def this decrease
successful cycles. As we have to determine the percentage attually depends on the modulation amplitude, which we
successful switches for a large numiperl00 000 of modu-  chose such to have a decrease between consecutive peaks of
lation cycles to obtain statistically relevant data, we will ac-one decade. If we caf,(t) the probability density function
tually count the number of missed switches by looking at theof the residence times, a decrease of one decade implies that
histogram of the time the system stays in one mode before

IOglOPr(t + T) = IOglOPr(t) -1 (5)
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or
1 1
Pr(t + T) - Epr(t) - Epr(t)- (6)

A successful switch is in principle defined by integrating
P,(t) over a modulation period around the position of the
first peak. However, such an indicator is too sensitive to the
backgroundi.e., the switches that take place in the absence
of an input modulation signa[13]. To avoid this problem,
we integrateP,(t) over aT/2 width and we will only work at
frequencies above the stochastic resonance frequency. After
integration ofP,(t) over half a modulation perio@/2 around
FIG. 2. Time traces ok, obtained by numerically solving Eq. the position of the first peak, we obtain the probability of a
(1). Parameter values af2=0.048,T=2m/»w=100,J,=0, andJ,,  successful up switcki.e., a switch from the “-” to the “+”
=0.31. mode, whereas such an integration around the position of
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the second peak yields the probability of a switch being f(O,(wy)) = f(Ox(wy)), (9)
missed once. Because the shape of the different peaks in Fig}. _ .
3 is the same, the integral &%(t) will scale in the same way en the output variabl®©,;(w) we want to characterize is
over a modulation period as the height of the peaks. There2!S0 the same or
fore, the probability of_ a succgssfu] up switch is 10 times Oy(wy) = Oy(w,). (10)
larger than the probability a switch is missed once, which is o _ _
in its turn 10 times larger than the probability a switch is If we use a monochromatic input signal and change its am-
missed twice, and so forth. So a one decade difference meap§tude in order to have a fixet{O,(w)), we can say that

0 ;
that 90% of the up switches are successful, as Oy(®) = H(w)l () = const, (11)

1\ /1)\n similarly as in Eq.(8). So finally we obtain the frequency
(1——)2 (—) =0.9+0.09+0.009+--=1. (7) response of our bistable system by inverting the previous
F/omo \F equation:

Similarly, 90% of the down switche@.e., switches from the H(w) = ——. (12)
“+" to the “=" mode) are successful. For a successful cycle, l(w)

both the up and down switches need to happen, leading to
probability of a successful cycle of 81% for the situation
depicted in Fig. 3.

We now define thestochastic frequency response as the
inverse of the modulation amplitude needed to have a fixegi
level of successful cycles as a function of the modulatio
frequency We use in this definition a fixed level of 81%. In

this is why we use in our definition of the SFR thverse

of the modulation amplitude needed to get 81% successful
cycles.

The above treatment can only be performed for frequen-
es above the stochastic resonance frequency. At lower fre-
uencies, the histograms lose their distinct peaks at odd mul-

principle. one can choose a higher percentage, but this wi iples of half the modulation period and tend towards a single
' ' eak on an exponential background. Our definition of the

considerably lengthen the measurem@nmtintegration time SFR cannot be used in this case, because it can only be

cnough missed Swiches are needed 1o obiai a statstcaliPPIed W at east o peaks in the histogra.
9 We will now show how such a stochastic frequency re-

relevant histogram. . : "
As we will show, to compare the SFR with standard re_sponse is fully determined by the transition rates of the two
. . sitable modes.
sponses of linear systems we need to look at the inverse 6
the modulation amplitude. Indeed, in linear systems, the re-

sponse to a harmonic modulation is given by . THEORETICAL TREATMENT

O(w) = H(w)(w), (8) If the parameterd in Eq. (1) is not equal to zero, the
potential is skewed and the transition ratesandr_ of the
wherel (w) is the Fourier transform of the input variable and tWO states are no longer equal. If moreover the paranieter
O(w) is the Fourier transform of the output variable. A stan-dépends on time, the transition rateswill also be modu-

dard procedure to determine the transfer functitf) is to It:;]\tedLin time. The r?te@ c;a?r; in pripciple,lﬁle de}:iyed front1_
take a monochromatic inpu{w) with constant amplitude € Langevin equation ot the system, afthougn In practice

and measure the outpO ) as a function of the modulation ::'SSK')S rlfrggllgft?ﬁedizggi;%g%rirgy{g:a;lrye' B?Jee:]nyt/)w?géhe
frequency.O(w) then equals the transfer function. g S 9 Y

However, this is not possible for bistable systems inRef' (1D
which an input signal(w) at frequencyw does not give in t
general a periodic output, as is evident from the time trace P, (1) =r.(J)exp —f ro(J)dt|. (13
shown in Fig. 2. The problem that we want to address is how 0
to characterize quantitatively the response of a bistable syshe time dependence in E¢l.3) stems from the fact that we
tem, such that it sheds light on the physical phenomena regire modulating the parametéaccording to Eq(4). One has
lating its dynamics. In our picture, the input varialfie Eq.  to be careful, however, that the distribution of E&3) is not
(2) the parameted] drives an intermediate variabl®;(w)  the distribution of the measured residence times plotted in
through linear mechanismé(w) is the origin of the bista-  Fig. 3; it is the distribution of the time the system stays in the
bility and drives the switching process, but is not directly “+” mode (“-" mode) if it was in that mode at tim&=0. So
accessible. Our aim is to obtain the response function linkingt is only the residence time of the “+” modé-" mode),
O,(w) to the input variable, thus getting useful information when the system switched to that mode at tita® or, in
about the underlying physics. For this purpose, we invert thether words, for a fixed phase relation between the input
problem and introduce a suitable indicaf¢D,(w)) based on modulation and the switch. To get the distribution of the
the outputO,(w) of the system: the percentage of successfuphase independent residence time, we have to average over
modulation cycles. We assume that if the number of succes@l possible phaseeve write the dependence &, on ¢
ful switches is the same for different frequencies or explicitly): -
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d=In[P, O] In[P, (t+T)]=-Gy(T 24
P (1= f Prn (1, §)P. ($)d, (14 PO nP D16 29

-
where P, ,(¢) is the probability density that the system :f r.(t, d)dt. (25)
switched to the “+” mode&“-" mode) with a phaseg with 0
respect to the modulation. Unfortunately, there is no know
method to derive this phase distributidt ,, although in
some limits self-consistent distributions have been propose
in the literature(see Refs[1,3-5).

Even without knowing the expression for Ed4), we can
get the information we need to derive an expression for the 27w
SFR. Indeed, this frequency response is derived from the |n(10):f r+(Jp + Jpsin wt)dt. (26)
modulation amplitude which leads to 81% successful cycles 0

or a difference of one decade between consecutive peaks | K that Eq26 ts t tions: ¢
the residence time distribution. Therefore, we only need th e remark that Eq:26) represents two equations: ane far

relation between the height of consecutive peaks. We wilf’jlnd one for,. Therefore we have wo integral equations to

derive an expression fd?, (t+T), with T being the period of Solve for tV.VO variables, andJm. Plotting the invgrse Odr,
modulation. We write as a function of frequency gives the stochastic frequency

response curve, as explained in Sec. Il. Equati8) is one

P (t. &) =r.(t, d)exd G.(t, &)1, 15 of the main theoretical results of this paper. It allpws us to
mi( #) =1L HEXHCAL )] (15 generally evaluate the frequency response of a bistable sys-

tem and compare it with standard linear systems theory. To

nl’he phasep in this equation is irrelevant as explained by Eq.
(VAN and can therefore be left out. We ftk=In(10) as a
reference value, which corresponds to a decrease of one de-
cade. So we have to solve

definin
g show its validity and uses, we will apply it in the next section
t to two problems: a simple bistable system with escape rates
G.(t,¢) = —J r.(t, p)dt. (16)  proposed by McNamara and Wiesenfetbe Ref[2]) and
0 the problem of determining the influence of a limiting time
We have scale on polarization switching in VCSELSs.
r(t+T,¢) =r.(t, 9), (17) IV. APPLICATIONS
asr, is periodic, and A. Frequency response of a simple bistable system
t+T To study the general traits of the frequency response curve
G.(t+T,4)=— f r.(t, #)dt we start with th_e modulateq escape rates proposed by Mc-
0 Namara and Wiesenfel®] with the biasJ,, of the modula-
T ot tion fixed at O:
=- f r(t, p)dt- f rt@)dt (18 3
0 T r.(t) = rKexp{iB’“cos(wt)] , (27)
t " .
(T, d’)_f (L )t (19) where the Kramer transition ratg, (see Refs[14,19) is
0 given by
=G,(T) + G, (t, ) (20) Rl (28)
—Ox L @) N2
Note thatG,(T) is independent of the phase As in Refs.[1,2] we assume that the modulation amplitude is
small, so we can develop ER7) as follows:
G =C.T,p) U ¢, (21)
J 1(Jm)\?
since it is the integral of a periodic function over one period. ro(t) = rK[l + coq wt) + 5(—"’) cosz(wt)} (29
So we have D D

_ We actually take Eq29) as a starting point of the analysis
me(HT'd’)‘P”&(t"f’)exde‘—'(n]' (22) and calculate the corresponding frequency respbnae.
now combine Eqgs(25) and (29). The frequency response
which we defined in Sec. [Eq.(12)] to be the inverse of the
modulation amplitude then equals

Substituting in Eq(14) yields
P, (t+T) = ex{G.(T)IP, (1). (23)

A decrease of the height with a facti=e® between con- Yn fact we also look at the modulation regions where @§) is
secutive peaks oP, is attained if not a good approximation of E¢27).
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100 sers. This will not only show us a real-world example of such

a stochastic frequency response, but we will also demon-
strate how this method can be used to determine the physical
mechanism causing the switching and hence the bistability in
the system. VCSEL's are semiconductor lasers that emit light
in a single longitudinal mode perpendicular to the substrate
on which they are fabricated. In their single-transverse-mode
- regime, they usually emit linearly polarized light in one of
two orthogonal linear polarization modes. In some VCSEL's,
abrupt polarization switchingPS between these polariza-
o001 001 ol tion modes(PM’s) is observed when the injected current is
® changed. To model this PS we will use a phenomenological
intensity rate-equation model introduced in Ref$6,17,
which has been shown to adequately describe the VCSEL's
polarization response. The key ingredients in our intensity
rate-equation model arei) current- or temperature-
dependent gain coefficients for the two polarization modes,
which cause PS to occur at the current or temperature where
the gains equalize, an@) gain saturation coefficients, which
N induce a region of bistability around the switching point.
H(a)):<D /2(dw—27TI’K)> (30) Furthermor_e, i_n t_his model tirr_1e is _red_uced with respect
My ' to the carrier lifetime. The carrier noise is neglected; as in
VCSELSs, it is much smaller than the spontaneous emission

Equation(30) is plotted in Fig. 4 together with the frequency nojise. Written down in dimensionless parameters these equa-
response as obtained from simulations of E43(3) and  tions are[16,17

semianalytical calculations using E@&6) and(27). The sto-
chastic effects clearly cause a slope in the frequency re- r T

10

Frequency response

FIG. 4. SFR obtained from simulations of E@¢$)—3) (circles),
semianalytical calculations using E6), and escape rates given
by Eg.(27) (solid line) and plot ofH(w) [Eg. (30)] (dashed ling
Parameter values used aleIn(10) and D=0.048, which corre-
spond to a stochastic resonant pulsationwgk=3.87x 1073, The
asymptote near the stochastic resonance peak is clearly visible.

sponse, which flattens for high frequencies. There is a good dp =Py 7~ &Py~ &cPy — G + lRsp+ |~:X,
correspondence between simulations, the semianalytical fre- dt L 2] 2
guency response calculated by numerically solving(26),

and the full analytical approacfEq. (30)]. At higher fre- d r cl 1 ~
quencies, Eq30) deviates from the simulations because the =py| 7—ePy— &b+ — |+ ZRsp+ Fy,
approximation in Eq(29) is only valid for small modulation dt L 2] 2
amplitudes. The differences between the simulations and the

semianalytical calculations are caused by the limited validity dn J—p.—

of the escape rates: E@27) is also only valid for small 47 _27PPBy 7= Pd 7~ &Py~ chy]

modulation amplitudes. dt P

The asymptote in Fig._4 ab=3.36x 1072 is due_ to the — L7 - ePy = £y, (32)
phenomenon of stochastic resonance. Its place is, however,
also determined by the value df[the exponential decrease
of the peaks in the residence time distribution—see Eq
(24)]: indeed we have

wherep, , are the photon densities in the two PM,. are
the optical saturation coefficients, is the deviation of the
carrier density from its threshold valug, is the gain differ-
2ary 2 ence between the PM’s, antis the dimensionless current
@ =TT T SR (31)  above threshold given by=(I-1y)/1y, with | being the cur-
rent(in mA) andly, being the VCSEL's threshold curre(in
where wsg= T is the modulation frequency for which sto- mA). Ry, is the mean power spontaneously emitted in the
chastic resonance occuisee Refs[1,2]). For the parameter PM’s, p is the ratio of the photon to the carrier lifetimeis
values used in Fig. 4 this results #.=0.003 36. This value he reduced time, ari'élxvy are stochastic terms describing the

corresponds exactly to the position of the asymptote inghontaneous emission noise with correlation functions
Fig. 4. Note that Eq(31) is not only valid for switching rates

given by Eq.(29), but also for Eq(27) and for more general

well-behaving rates, since the approximatighD<1 is (Fyy(DFyy(8)) = 2Ry, At = 5). (33

valid at the asymptote, where the modulation amplitude van-

ishes. The stochastic differential equatioii82) have to be inter-
preted in the Stratonovich sense8]. Thepy (p,) mode plays

the role of the “="(“+") mode of Sec. lll. Finally, the polar-
ization switching is induced by changes in the gain differ-

We will now study the stochastic frequency response ofnceG when the injected current is changed, which we
polarization switching in vertical-cavity surface-emitting la- express as

B. Frequency response of polarization switching in VCSEL's

046214-5
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Hiot(@) = Hi(0)I (@) = Hi(w)Hg (o). (37

The total response curve is simply the product of the direct
frequency respongd;, andH;. In other words we can work
with such a definition of the frequency response in bistable
systems as if we were dealing with linear response curves.
This way, H; (i.e., the physical mechanism that links the
modulated parameter with the change in potenti@n be
identified.
‘ . . As an example of this technique, let us consider that the
1 10 100 1000 10000 100000 gain differenceG between the polarization modes in our
10°w VCSEL is not directly influenced by the injected current, but
e . . through another parametErwhich in its turn depends on the
FIG. 5. Polarization switching frequency response simulated usl’njected current. We assume thBtonly reacts to current

ing Egs.(32—34) (circley and semianalytically calculated using . : . ;
Egs. (26) and (35) (solid line). Also shown are the simulateti- I:umcéucact)lr?sr,lsarg?rs,ouucghhtﬁalltnear first-order response with a slow

angles and semianalytica{dashed ling frequency responses if a

1000 |

100 |

Frequency response

10 F

slow time scale as in Eq$38) and(39) is taken into account. The T
parameter values used algyicr=0.4, €, €s=8.47,Rs,=0.022,p G=g|1- 3 (38)
=0.001,9=25.3, andpr=1770 and correspond to a real device switch
[19]. and
Ll (39)
ng(l‘ ): (34) dt_ Pr '
switch

wherepr is the ratio ofl"’s time constant to the carrier life-
where Jg,icn IS the current at which the PS happens and time. The resulting frequency response is also shown in Fig.
specifies the magnitude of the gain difference. After reduc5. Again there is good correspondence between the simula-
tion of Egs.(32) to a one-dimensional Langevin equation tions and semianalytical calculations. Moreover, the fre-
describing the intensity in one of the polarization modes, wefjuency response calculated using B8 matches very well
can obtain the transition rates between the two polariza- With the response that one would obtain by multiplying the

tion modes(see Ref[17]): response calculated according to E84) with a first-order
transfer functior(not shown as indicated by Eq37). In this
1 2 18e {(G + J&)} [ (G+ J&)} frequency response we can clearly see the effect of the slow
—= er , i| ——1|, time scale at whicH’ reacts. If one measures such a fre-
r. (-G+J5e)(G+Jde) 2VRpde 2VRpde quency response for a particular device, the time scale—

(350  which is intimately linked with the underlying physical

process—that determines the switching can be easily identi-
where Se=¢.-s, erf is the error function, and erfi is the fied. This method can, for instance, be used to study the
imaginary error function. Using these transition rates, we carhfluence of thermal effects on the PS in a VCSEL. Thermal
calculate the frequency response from Eg6). This is  €ffects typically happen with a slow time constaabout 10
shown in Fig. 5(circles and compared with simulations of ps) and can be directly measured by looking at the
the frequency response based on the full set of equatds temperature-dependent frequency shift of the emitted light
(solid line). The excellent agreement between simulationgor chirp). In Refs.[19,2Q such a comparison between the
and semianalytical calculations confirms the validity of Eq.measured thermal and PS frequency response was success-
(26). The asymptote in Fig. 5 ab=1.9x 10° is due to sto- fully used to show that PS in some VCSEL's (at least
chastic resonance and agrees well with the calculated valugartially) due to thermal effects.
w=1.89%X 10° of this asymptote using E¢31).

This frequency response can be used to determine the

physical mechanism of the switchignd consequently of V. CONCLUSION
the bistable systemIndeed, consider that the paramedfer

which is experimentally availabléand is modulateddoes In this paper we presented a method to determine a fre-

guency response curve in a bistable system with noise. This
SFR can be compared with classical responses of linear sys-

through a linear systertiy(w). If we call I' the parameter tems. It is defined as the inverse of the modulated amplitude

that determines the potential, then we have that is needed to get a fixed value of successful switches
between the two stable states of the system under test. The
['(w) = Hy(0)I(w). (36)  definition is only valid for frequencies above the stochastic

resonance frequency, whereas the asymptote in the frequency
The total response curve of the system is still given by theesponse curve clearly shows the presence of stochastic reso-
inverse of the needed amplitude bf nance.
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We have derived an equation to calculate this frequency19,2Q to identify the physical mechanism causing polariza-
response based solely on the transition rates between the t#ion switching in particular VCSELS.
stable states of the system. The validity of this equation was
checked on two example bistable systems.

Moreover, we have shown how this method can be used ACKNOWLEDGMENTS
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